In vivo and in vitro evidence that the four essential intermediate filament (IF) proteins A1, A2, A3 and B1 of the nematode Caenorhabditis elegans form an obligate heteropolymeric IF system.
نویسندگان
چکیده
The in vitro polymerization and tissue-specific expression patterns of the four essential intermediate filament (IF) proteins (A1, A2, A3, B1) and the non-essential IF protein A4 were analyzed. Recombinant B1, used as a probe in blot overlay assays of the 11 Caenorhabditis elegans IF proteins, reacted strongly with proteins A1 to A4, indicating a heterotypic interaction. Obligate heteropolymeric filament assembly in vitro was confirmed by electron microscopy. Protein B1 formed long IF when mixed with an equimolar amount of A1, A2 or A3. Developmentally regulated coexpression of B1 and one or more members of the A family was found with GFP-promoter reporters. This coexpression pattern argues for a heteropolymer system in vivo. One or both splice variants of the B1 gene are always coexpressed in a tissue-specific manner with at least one member of the A family in hypodermis, pharynx, pharyngeal-intestinal valve, excretory cells, uterus, vulva and rectum. Interestingly, while the intestine normally lacks a B1/A pair, the dauer larva shows intestinal B1 and A4. These results are in line with similar postembryonic phenotypes of the hypodermis induced by RNA interference (RNAi) of genes B1, A2 and A3. Similarly, defects of the pharynx and its A1-GFP containing tonofilaments observed in the postembryonic B1 RNAi phenotype are consistent with the coexpression of B1 and A1 in the marginal cells. Thus RNAi analyses provide independent evidence for the existence of the B1/A obligate heteropolymer system in vivo. Proteins A1 and B1 have a similar and rather slow turnover rate in photobleaching experiments of the pharynx tonofilaments.
منابع مشابه
Essential roles for four cytoplasmic intermediate filament proteins in Caenorhabditis elegans development.
The structural proteins of the cytoplasmic intermediate filaments (IFs) arise in the nematode Caenorhabditis elegans from eight reported genes and an additional three genes now identified in the complete genome. With the use of double-stranded RNA interference (RNAi) for all 11 C. elegans genes encoding cytoplasmic IF proteins, we observe phenotypes for the five genes A1, A2, A3, B1, and C2. Th...
متن کاملExpression profiles of the essential intermediate filament (IF) protein A2 and the IF protein C2 in the nematode Caenorhabditis elegans
The multigene family of intermediate filament (IF) proteins in Caenorhabditis elegans covers 11 members of which four (A1-3, B1) are essential for development. Suppression of a fifth gene (C2) results in a dumpy phenotype. Expression patterns of three essential genes (A1, A3, B1) were already reported. To begin to analyze the two remaining RNAi phenotypes we followed the expression of the A2 an...
متن کاملMost genes encoding cytoplasmic intermediate filament (IF) proteins of the nematode Caenorhabditis elegans are required in late embryogenesis.
Intestinal cells of C. elegans show an unexpectedly high complexity of cytoplasmic intermediate filament (IF) proteins. Of the 11 known IF genes six are coexpressed in the intestine, i.e. genes B2, C1, C2, D1, D2, and E1. Specific antibodies and GFP-promoter constructs show that genes B2, D1, D2, and E1 are exclusively expressed in intestinal cells. Using RNA interference (RNAi) by microinjecti...
متن کاملTissue-specific co-expression and in vitro heteropolymer formation of the two small branchiostoma intermediate filament proteins A3 and B2.
The two small intermediate filament (IF) proteins A3 and B2 of the cephalochordate Amphioxus were investigated. Blot overlays indicated a heterotypic interaction pattern of the recombinant proteins. While the individual proteins formed only aggregates, the stoichiometric mixture formed obligatory heteropolymeric filaments. Mutant proteins with a single cysteine residue in equivalent positions g...
متن کاملEvaluation of Shear Bond Strength between Amalgam and Composite: An in vitro Study
Background & Aims: Repair of defective restoration is more conservative than replacing it. Veneering the amalgam restorations with opaque resin materials can satisfy the esthetic demands. Evaluation of interfacial bond quality between amalgam and composite surface is one of the important factors in assessing the quality of repaired amalgam which can be achieved...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular biology
دوره 333 2 شماره
صفحات -
تاریخ انتشار 2003